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Abstract – Continuous Inference Networks 

(CINets), a form of multilayer fuzzy value networks, 

allow computation with fuzzy values in concise 

structures, are capable of universal function 

approximation, and are readily interpretable 

through natural language, aiding maintenance, 

modification, collaboration, and knowledge sharing. 

However CINets have been reliant on Subject 

Matter Expertise (SME) and manual tuning to 

realize optimal performance, limiting their 

applicability.  With ONR support
[i]

, ARL has 

developed a supervised learning process for CINets, 

capable of designing a CINet structure, and of 

optimizing an existing CINet structure. The CINet 

supervised learning process allows the automated 

development of data fusion, classification, and 

pattern recognition structures that are interpretable, 

modifiable, and concise.  Performance of CINets 

developed with the supervised learning process is 

compared to that of Artificial Neural Network 

(ANNs), fuzzy logic rule set, and Bayesian network 

approaches. 

 

Keywords: Fuzzy Logic, CINet, Supervised 

Learning, Network Learning, Particle Swarm 
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1 Introduction 
In the mid 1990s, a flexible data fusion, 

pattern recognition and classification tool termed 

Continuous Inference Networks (CINets) was 

developed at the Applied Research Laboratory at The 

Pennsylvania State University (ARL/PSU) to capture 

Subject Matter Expert (SME) domain knowledge for 

torpedo and anti-torpedo guidance and control 

automation.
[1]

  CINets have been used for problems 

including shipboard damage control, medical 

                                                 
[i]

 Work sponsored under ONR Contract # N00014-05-G-
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anesthesia monitoring, WMD agent detection, and 

condition-based maintenance. CINet structures are 

multi-level fuzzy logic networks, and have some 

advantages of both fuzzy logic systems and Artificial 

Neural Networks (ANNs). Like fuzzy logic systems, 

the CINet technique allows the use of human-

intuitive approximate descriptions of a problem 

domain to build an effective structure.
[2]

 Like multi-

layer perceptrons, the formalism can be used to build 

compact and fast structures, scalable to large Multi-

Input Multi-Output (MIMO) problems, while 

avoiding the rule explosion problems that affect 

fuzzy rule systems
[3]

  

CINets also maintain features common to 

both fuzzy systems and ANNs. The technique can be 

be shown to possess the property of universal 

functional approximation. CINet structures are 

implemented using a mixture of scalar and vector 

mathematics, and so tend to be efficient enough to 

use in real-time systems. In the worst case (a CINet 

with complete interconnection of all nodes) execution 

time is factorial with the number of nodes, but typical 

SME-designed CINets are concise networks with 

reduced interconnections, and therefore have 

complexity that approaches a linear function of the 

number of inputs. Figure 1 below shows the structure 

of a section of a CINet classifier for a problem that 

will be discussed in sections 2 and 3 of the paper. 

 

Figure 1: Iris Classifier CINet Setosa Subnetwork 

 

  In the past, CINet structures have been 

designed and tuned by SMEs using a simulation-

based design process; a labor-intensive process for 
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most problems of interest. Ad-hoc CINet creation 

also requires that an SME have an adequate level of 

knowledge to structure a CINet that will perform well 

for all variations of the problem domain. By utilizing 

machine learning techniques, CINets can be 

constructed via a supervised learning approach. With 

support from the Office of Naval Research (ONR) 

Code 333, ARL/PSU has developed a supervised 

learning process to produce CINet objects using 

labeled training data.  Introduction of supervised 

learning for CINets extends their use to a much 

broader set of applications: automated network 

construction and tuning with labeled data sets, on-

line network adaptation, and knowledge discovery, 

all while retaining the intrinsic benefits of the CINet 

approach. Section 2 of this paper will describe the 

approach used to provide supervised learning for 

CINets. Section 3 will compare performance of 

CINets developed using the supervised learning 

process to CINets developed manually and to other 

classification techniques, and section 4 will present 

conclusions on the approach. 

2 CINet Supervised Learning 

Approach 
Using supervised learning to both choose the 

fuzzy logic operators for the connective nodes and to 

set the input weights can greatly reduce the level of 

effort required to develop CINets. The supervised 

learning process has three stages: 

1. Set the dimensions (number of layers and number 

of nodes in each layer) of a fully-connected network 

2. Optimize the weights and connective fuzzy 

operators of the network 

3. Remove nodes and edges that do not affect the 

CINet ouput (“Pruning”). 

The third stage of the process delivers a 

concise CINet structure that will require fewer 

computational resources in operation, but is also 

easier for researchers to study and gain insights into 

the problem domain. In cases where an initial 

network structure is available (i.e., an SME has 

designed a CINet for the problem), the supervised 

learning process can be used to optimize the weights 

and fuzzy operators within this structure. In this case, 

only the second stage of the supervised learning 

process is required. However, the third pruning stage 

of the process may be able to identify segments of an 

SME-designed CINet that are unnecessary. In this 

way, the supervised learning process may be able to 

add to even the SME’s knowledge of the problem. 

Section 2.1 will discuss the significance of weight 

values in a CINet, and how the supervised learning 

process uses the weights for structural learning and 

optimization. Section 2.2 will present the additions to 

the CINet methodology necessary to support 

supervised learning. Section 2.3 will discuss the 

application of the Particle Swarm Optimization 

(PSO) algorithm for CINet supervised learning, and 

section 2.4 will describe the CINet structural 

reduction stage of the supervised learning process.   

2.1Weight Values in CINets 

CINet structures are directed weighted 

graphs, where the nodes are either fuzzy membership 

functions or fuzzy logic operators, and the edges are 

fuzzy membership values. A CINet is typically 

structured as: a set of input sources, a set of 

membership functions as the first layer of the 

network, and one or more intermediate layers 

consisting of a set of connective nodes, producing 

one or more output fuzzy values. As an example, 

Figure 1 above shows a section of a CINet for the 

Fisher iris classification problem. Fuzzy logic 

operators can include fuzzy union and intersection 

operations (“OR” and “AND”), but negation and M 

out of N (“MOON”) operations have been employed. 

The CINet technique does not constrain the specific 

choice of operator implementation; standard max-min 

and product-sum implementations have been used, as 

well as others.
[4]

   

Weights on the input edges are real numbers 

in [0 1]. The weights on the input edges to a 

connective node represent the relative significance of 

the input fuzzy values to the output fuzzy value from 

the node. The specific impact of varying an input 

weight will depend on the type of fuzzy operator and 

on the fuzzy logic implementation chosen. Generally, 

a weighted fuzzy union operation will be the fuzzy 

union of the intersections of each input value with its 

corresponding weight, as diagrammed in Figure 2. 

The figure also shows the diagram of a weighted 

fuzzy intersection operation, which is the fuzzy 

intersection of the unions of its inputs with the 

complements of its corresponding weights
[5]

.  

 

 

Figure 2: Weighted Fuzzy Union and Intersection 

 

Some examples will be used to show how the impacts 

of varying the weights on the inputs are dependent on 
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the choice of fuzzy logic implementations used for 

the base intersection and union operators. When 

max/min fuzzy logic is chosen, then the weighted 

fuzzy intersection operation becomes: 

min[max(x1, 1-w1), max(x2, 1-w2)] 

and the weighted union becomes: 

max[min(x1, w1), min(x2, w2)]. 

For the weighted intersection operation, this means 

that the weight on a given input places a threshold on 

how low that input can drive the output; i.e., if an 

input has a corresponding weight of 0.3, and all other 

inputs are 1.0, then the output will be equal to the 

first input unless it is less than 0.3, in which case the 

output will equal 0.3. Conversely, for the weighted 

union operation, a weight will limit how high the 

corresponding input can drive the output of the 

operator.  

If sum/product fuzzy logic implementations 

are used instead of max/min logic, then the 

thresholding behavior of the weights will still be 

present, but in addition there will be a scaling of the 

sensitivity of the output to the corresponding input, 

proportional to the weight. For a sum-implemented 

union operation, if all inputs but the first are 0.0, then 

the output will be the product of the first input by its 

corresponding weight. So in that case, if the weight 

on the first input is 0.7, then the input will be unable 

to drive the output higher than 0.7, but the output will 

be proportional to the first input across its entire 

range. For all choices of fuzzy logic implementation, 

when the weight on an input goes to 0.0, then the 

output should be completely independent of that 

input, so that the input edge can then be removed 

from a CINet graph without affecting the input-

output behavior of that CINet. This is the main 

mechanism used for graph structural learning in the 

CINet supervised learning process. 

2.2 Weighted Fuzzy MOON Operators 

While the supervised learning process is 

able to specify the structure of a CINet using input 

weights, as part of the optimization, the process also 

needs to be able to determine the operator type for 

the nodes. Fuzzy AND and OR operations are the 

two most-frequently used operators in manually 

constructed CINets, but the operation of one is 

strongly dissimilar from another. Including some 

form of weighted fuzzy operator with intermediate 

operation between a fuzzy AND and an OR would 

lead to a more finely graduated solution space for the 

optimization algorithm. This in turn should improve 

the search performance of non-exhaustive search 

algorithms.  

Fuzzy logic systems researchers have 

previously identified connective operators that offer 

intermediate behavior between a fuzzy OR and a 

fuzzy AND operation.
[6]

  Logical M out of N 

(“MofN”) operators are intermediate operations to 

crisp logic AND and OR operators. They return 

“True” when at least M out of their N inputs are 

“True.” When M = 1, they are equal to logical OR 

operators, and when M = N, they are equal to logical 

ANDs. Logical MofN operators can be composed of 

subnetworks solely of logical AND and OR 

operators. Fuzzy MOON operations are analogous to 

crisp logic MofN , in that when at least M out of their 

N inputs are “high,” then their output will also be 

“high.” Similar to logical MofN, fuzzy MOON 

operations can be composed of subnetworks of fuzzy 

OR and fuzzy AND operations. The CINet 

supervised learning process requires a particular 

formulation of a weighted fuzzy MOON operator as 

the connective function for all connective nodes in a 

CINet structure: 

MOON(inputs,weights,M) = fuzzy OR(ΩM,ΨM), 

where 

ΩM = fuzzy AND[combination(inputs,M), 

combination(weights,M)], 

and  

ΨM = fuzzy AND[combination(weights,M)]. 

 

In the prior equations, a boldface identifier 

represents a vector quantity (either a vector of values 

or a vector of functions). The combination(X,M) 

operation returns a vector of unique sets of M 

members of X; e.g., with X=[A,B,C] and M=2, then 

combination(X,M) = {[A,B],[B,C],[C,A]}. So, the 

weightedMOON is a fuzzyOR of the weighted 

fuzzyANDs of the unique combinations of M of the 

inputs, with the fuzzyAND results weighted by the 

fuzzyANDs of the corresponding unique sets of 

weights on the inputs. For use in the CINet 

supervised learning process, the weighted fuzzy 

MOON operator must simultaneously satisfy three 

requirements: 

a)  weighted fuzzy MOON must equal a weighted 

fuzzy OR when M =1 

b) weighted fuzzy MOON must equal a weighted 

fuzzy AND when M = N 

c) weighted fuzzy MOON must be independent of an 

input with a corresponding weight of 0.0; e.g., 

MOON([x, y, z], [wx,wy,0.0], 2) = 

MOON([x,y],[wx,wy], 2). 

For requirements a), b), and c) to be 

simultaneously satisfied with the formulation of the 

(1) 

(2) 

(4) 

(5) 

(6) 
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weighted MOON given in (3), it is necessary to 

explicitly define that a weighted fuzzy AND or OR 

operator, with only a single fuzzy membership value 

input, will give the input value as the output, 

regardless of the weight on that single input. This 

constraint is logically consistent with a model where 

the weight on an input to a fuzzy operator represents 

the relative significance of that input; if an operator 

only has a single input, that input is by default the 

most significant, and is the only factor determining 

the output value of the operation. It must be noted 

that, outside of individual input weights being 

bounded between [0 1], there are no further 

constraints on the individual or collective input 

weights of the weighted MOON operator, and they 

can be freely set in accord with the SME’s 

evaluations of relative significance, or to improve 

performance of the CINet. This is a difference from 

the constraints on setting weight values in operators 

such as the Weighted Modified Hamacher Operator 

(WMHO), where input weights are strictly set so that 

multi-level fuzzy networks behave identically to 

equivalent “flat” n-input single t-norm operations
[7]

. 

In addition to ensuring equivalent behavior, WHMO 

weights give greater significance to lower-level 

inferences with more inputs, but are not freely 

selectable by the network designer. 

2.3 Design and Optimization of CINets 

using Particle Swarm Optimization 

Using the weighted MOON operator, the supervised 

learning process must set the value of M of each 

connective node, and the weight for each input edge 

to each connective node. The values for the input 

weights are continuous variables in [0 1], but the M 

values must be positive integers. Also, for a 

particular connective node with N inputs, values of M  

>  N are not applicable. To avoid implementing a 

mixed-integer or hybrid continuous-discrete search 

algorithm, a function is developed that maps a 

continuous value �� , defined on the interval [0 1], 

into  the integer M. The mapping to determine M 

from ��  and N is 

M = 1+round[��*(N-1)] 

where round(x) is rounding to the nearest integer. 

The reverse mapping is 

 

�� = �M − 1N − 1 , 
 > 1
1.0, 
 = 1

�	 
so a ��of 0.0 corresponds to a fuzzy union operation, 

and 1.0 corresponds to a fuzzy intersection operation. 

By replacing the M values with continuous values, 

the solution space becomes a hypercube with length 

0.0 � 1.0 in all dimensions. 

The Particle Swarm Optimization (PSO) 

algorithm, first published in 1995, is a guided 

stochastic search algorithm, popular for its simplicity 

and general suitability for a wide range of 

optimization problems.
[8]

 For supervised learning for 

CINets, each particle is a complete vector of ��  and 

input weight parameters, specifying a potential 

solution CINet. As the PSO algorithm proceeds, the 

parameter vector particles should converge towards a 

global optimum; i.e. a set of ��  and input weight 

settings for an optimally performing CINet for the 

problem in question.  

The user must define the performance 

function that the PSO algorithm uses to evaluate the 

performance of the particles in each cycle of the 

optimization. This means that the CINet supervised 

learning process becomes applicable to many types of 

pattern recognition or data fusion problems when an 

appropriate performance function is selected. An 

example candidate performance function for a 

regression problem is: 

e
-(||Labels(X)-Outputs(X)||)

; 

i.e., performance is the e to the negative difference 

between the label outputs for examples X and the 

CINet outputs for examples X. The performance 

approaches 1.0 when the difference between the label 

values and the CINet output is small for all examples. 

For a classification problem, a possible performance 

function is: 

#correct_classifications / #examples, 

where a classification is correct if the output of the 

CINet for the correct class is the highest of all the 

CINet outputs for the example. Performance 

functions can also be made directly dependent on the 

optimization parameters themselves. For example, for 

a problem where it is important that the final network 

design have as few remaining components as 

possible, a performance function that penalizes input 

weight parameters not set to 0.0 or 1.0 could be used. 

The supervised learning process would then tend to 

find optimal solution CINets with only full-weight 

input edges or zero-weight edges. The many zero-

weight edges could then be discarded in the reduction 

stage. 

 The CINet supervised learning process 

allows the user to modify the standard PSO 

parameters to control PSO discovery and refinement 

during optimization. The user is also able to 

determine the number of particles to use during an 

optimization trial, and the exit conditions that 

terminate a given trial. As with any stochastic search 

(7) 

(8) 

(10) 

(9) 
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optimization, the number of iterations necessary to 

reach an acceptable optimum cannot be a priori 

determined, so PSO trials terminate after some pre-

set cycle count. The user can also set a required 

minimum necessary performance level a minimal 

level of improvement d necessary to continue more 

than P cycles (if after P cycles, the performance of 

the global best has not improved by d or greater, then 

the trial will terminate), or a minimum allowable 

radius of the particles (the trial will end when all of 

the particles are within a radius r of each other). All 

of the potential exit criteria are available to use 

simultaneously. 

 One feature of the PSO is that the particles 

are not bound to remain within an initial region of the 

search space. For many optimization problems, this 

can be considered an advantage (the user does not 

need to be able to initially determine the region of the 

search space in which the global optimum lies), but 

for CINet supervised learning, the only valid 

solutions are within the hypercube between 0.0 and 

1.0 in all directions. On each cycle, any particle that 

has moved outside of the hypercube is adjusted to lie 

on the point of the surface of the hypercube where it 

exited. In an early design of the supervised learning 

process, the hypercube surfaces were made “elastic;” 

i.e., particles that were returned from outside the 

hypercube had their velocities reversed. However, 

this caused the motions of the particles within the 

search space to be unstable – particles would soon 

oscillate from surface to surface, with no discovery of 

optima in the interior space. The final version of the 

process sets the velocity of errant particles to zero, 

which results in better subsequent search of the 

interior of the solution space. 

2.4 CINet Structure Reduction 

Pruning of CINet network components that 

make no contribution to the output will result in a 

CINet structure closer to the minimal network 

necessary to provide correct results. This will 

improve the generalization of the resulting CINet to 

new input examples, although it will not affect 

overtraining during the optimization stage.  Because 

the MOON operator calculates the fuzzy AND 

operator for all unique combinations of M inputs, the 

number of suboperators calculated in the weighted 

MOON operator will equal 2*[(N-1)!] in the worst 

case (when M = ½ N or M = ½(M+1) ). This means 

that CINets with connective nodes that each have 

many input edges will also tend to be 

computationally complex. Since the supervised 

learning process is initialized to full interconnection 

between layers, this in turn means that the time to 

complete the optimization phase of the process will 

tend to increase factorially with the number of nodes 

in each layer. The pruning phase, by eliminating 

unnecessary edges, can dramatically improve the 

execution time for the final CINet structure; an 

advantage for CINets intended for application in real-

time systems. Finally, this reduced structure can also 

be more readily studied to gain insights into the 

problem domain.  

The reduction phase of the CINet supervised 

learning process removes three types of components: 

1- Input edges with corresponding weights set to 

zero. 

2- Connective vertices with a single fuzzy input. 

3- Vertices, other than output vertices for the CINet 

structure, with no output edges (which also removes 

all of its input edges). 

In the first case, if the connective node that 

takes the edge as an input has at least one other input, 

then the zero-weight edge is removed from the 

network, and the connective node that had the zero-

weight edge as an input has its N value reduced by 

one. The strictness value for the node is held 

constant, so the M value for the node may or may not 

be reduced. In the second case, any connective node 

with only a single input edge is removed from the 

network. All of the edges that had received the output 

of the removed node are instead connected to the 

node that was the source of the removed node’s input 

edge. 

In the third case, any node that is not an 

output node for the CINet structure and with no 

output edges is removed from the network. It is 

possible for dead-end nodes to be created by the 

removal of other nodes but remain in the network, 

using the current single-pass version of the CINet 

reduction algorithm. Multiple passes, or an explicitly 

recursive reduction algorithm, would be necessary to 

guarantee the removal of all unnecessary network 

components. In the case when supervised learning for 

CINets is used to tune a structure initially provided 

by a SME, that structure may already clearly and 

concisely capture the inputs, outputs, and 

intermediate properties necessary to provide correct 

results for events in the problem domain. When it is 

not, the supervised learning process will be able to 

prune nodes and edges that prove extraneous when 

the CINet is optimized.  

 

3 Performance Comparison 
To evaluate the performance of the resulting 

CINet structures, the supervised learning process was 

applied to develop CINets for a common reference 
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problem. The Fisher iris classification problem is one 

of the seminal studies in multicriteria classification, 

and continues to be used as a standard reference 

problem in classification.
[9]

 The data set consists of 

measurements for 50 samples each from three iris 

species; iris setosa, iris versicolor, and iris virginica. 

The measurements for each sample are petal length 

and width, and sepal length and width. The species’ 

sample distributions overlap, and there are a few 

outlier samples that fall substantially within the 

distributions of other species. 

So as to help bound the dimensions 

specified for the supervised learning process, a CINet 

was constructed and tuned by an SME; i.e. the 

authors, after studying the Fisher iris data set. 

Weighted sum/product operations were used for the 

fuzzyOR and fuzzyAND operations: 

������
���,�� = 	∏ �1 − �� + �� ∗ ��� �!" , 

and the fuzzyOR formulation: 

�����#$��,�� = 	1 − ∏ �1 − �� ∗ ��� �!" . 

Figure 1 in Section 1 shows the structure of the iris 

setosa-species-specific subnetwork of the SME 

CINet. There were identically-structured subnetworks 

for the iris versicolor and iris virginica species. The 

classification given to an example by the CINet 

would be the iris species with the highest output from 

its corresponding subnetwork. After four cycles of 

manual parameter tuning, performance was 96.0% 

correct classifications over all samples.  

For training of CINets for the iris 

classification problem, a performance function that 

emphasized classification was used: a CINet is 

considered to have correctly classified a sample if the 

network output for that species is greater than the 

output for the CINets for either of the other two 

species, even if the other outputs are only slightly 

less than the output for the correct species. The 

performance score over a set of samples is simply 

 

%&'() = *�+. &'(()&,	&-.%%/�/&.,/'*%,',.-	*�+0)(	'�	%.+1-)%  

The data set was randomly partitioned into 

evenly sized training and testing sets, with the 

proportions of samples from each species preserved 

in each set (i.e., both the training and the testing sets 

had 25 iris setosa samples, 25 versicolor samples, and 

25 virginica samples). Since the iris data set contains 

one or two examples for each species that fall far 

outside the normal distribution for that species, a 

50%/50% partition of the data was chosen to make it 

impossible for either subset to be made up entirely of 

outlier examples.  For each of three different CINet 

initializations, 10 independent supervised learning 

trials were run, and statistics gathered on training 

performance over these trials.  

The first evaluation used the domain-expert-

specified baseline iris classifier structure. The second 

evaluation used a general network  structure with the 

same number and arrangement of vertices, but with 

full connection between one layer and the next (i.e. 

each of the 12 input membership function vertices 

was connected to all 6 intermediate vertices, and each 

of the intermediate vertices was connected to all 

output vertices. The final evaluation used a structure 

with each input vertex connected to only two 

intermediate vertices, as a middle ground between the 

structures used in the 1
st
 and 2

nd
 evaluations. This 

third structure is representative of the kinds of 

assumptions that a researcher might be able to make 

about the associations of input data in a problem 

domain, even if they don’t have a sufficient level of 

expert knowledge to completely structure a CINet for 

the problem. Figure 2 shows the initial network 

structure for the final evaluation. All of the structures 

were evaluated with 20 particles per trial. The second 

and third structures were also evaluated with 50 

particles per trial. 

 

 

 

 

 

 
Figure 2: CINet Structure for Third Evaluation 

 

Table 1 shows the training performance of 

the process in the 3 evaluations. The “Max” and 

“Min” rows in table 1 are the maximum and 

minimum values over all 10 trials, with performance 

values being the best performance on the final cycles 

of the independent trials.  Trial time statistics are on a 

modern dual-core 2.4 GHz desktop processor, with a 

single-threaded supervised learning process and 4GB 

of RAM available. Table 2 compares the best 

achieved classifier performances against other 

published methods, including ANNs, Bayesian 

networks or fuzzy rule set classifiers.
[10],[11],[12]

  Like 

this study, the ANN study uses a 50%/50% partition 

of training/testing data, but the Bayesian network 

study uses a 90%/10% partition, and the fuzzy rule 

set study uses a Leave-One-Out (L1O) (149/1) 

partition. 

Input Membership Function 

Connective Node 

(12) 

(13) 

(11) 
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Table 1: Iris Problem Training Statistics 

 

Table 2: Maximum Iris Classification Scores for 

CINETs and Other Methods 

 

For the first evaluation, the supervisory 

learning process achieved performance close to or 

surpassing the “manually” constructed CINets on all 

trials. In most cases, the process identified an optimal 

solution in as few as two iterations, but one trial took 

46 iterations. That trial had the highest classification 

performance against the training set (98.7%), but 

relatively low performance against the test data 

(93.3%); i.e. the process had overtrained against the 

training set. The process does have a parameter to 

stop training when a performance threshold is 

reached, but that threshold was set to 100% for all 

trials. 

The second evaluation experienced far 

longer training times, partially due to the higher 

number of training parameters, but principally due to 

the number of nodes with high numbers of inputs in 

the structure. With 20 particles used in training, the 

second evaluation produced poor classification scores 

from the final CINets. The process was prone to 

settling in local optima, such as networks that 

correctly classified two of the species, but never 

detected the third species. Increasing the number of 

particles to 50 enabled the process to adequately 

cover the solution space and identify optima on par 

with those seen in the first evaluation, with the 

tradeoff of longer training times. 

The third evaluation had good classification 

performance with 20 particles on some trials, but the 

range of performances between trials was 

significantly larger than for the first evaluation. The 

time required to train the CINets was on the order of 

that required for the first evaluation. With 50 

particles used, the maximum and mean performances 

were higher than those of the first evaluation. Figure 

3 shows an example of the final optimum CINet 

structure after reduction for one of the trials in the 

third evaluation. 

 

 

 

 

 
 

Figure 3: Reduced CINet Structure for Third 

Evaluation 

 

Note the “unsupported” fifth intermediate 

node in Figure 3; a weighted MOON operator with 

zero weights on all inputs will always produce an 

output of zero. In these cases, the reduction stage 

replaces the connective node with a constant 0.0 

source node. The effect of this constant source node 

and the weight on the edge going from it to the 

second output node is similar to the bias term on a 

node in a multilayer perceptron. Compared to the 

SME-provided initial structure used in the first 

evaluation, this final structure contains many edges 

linking nodes driven by features for one species to 

nodes for different species. Since the classification 

performance of this optimized network is higher than 

that achieved with the SME-designed structure, a 

user could study the more-connected structure and 

gain insights into the classification problem. 

4 Conclusions 
ARL/PSU has developed a supervised learning 

process to construct and optimize CINet structures 

for classification, regression, and data fusion 

problems from labeled training data. Through the use 

of fuzzy operators that can be read off as natural 

language by an observer, human interpretability is 

preserved for CINets constructed by the process. 

Since the process also includes a reduction stage that 

Evaluation 1
st
  2

nd
  3

rd
  

Parameters 27 99 51 

Particle Count 20 20 50 20 50 

Score  

(%) 

Max 97.3 72.0 97.3 96.0 98.7 

Min 93.3 54.7 86.7 33.3 93.3 

Iteration Max 46 18 100 19 98 

Min 22 11 19 11 16 

Trial 

Time (s) 

Max 267 6.01e
3
 1.08e

5 
269 3.22e

3 

Min 87 1.08e
3 

6.32e
3 

136 653
 

Nodes 

Reduced  

Max 0 0 0 0 0 

Min 0 0 0 0 0 

Edges 

Reduced  

Max 7 18 35 19 17 

Min 5 8 34 13 16 

ANN Bayesian 

Network 

Fuzzy 

Rule 

Set 

CINET Sup. Learning 

1st 2
nd

_50p. 3
rd

_50p. 

97.3 95.5 96.7 97.3 97.3 98.7 
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acts to refine trained CINets into more concise, 

minimal structures, resulting CINets are more general 

with respect to novel inputs, have reduced 

computational complexity, and are even more readily 

interpretable. The supervised learning process for 

CINets can be used to determine a CINet structure 

through training a large, fully connected network, and 

then reducing that network by removing components 

that have no impact on the CINet output. The process 

is also demonstrably useful for setting the parameters 

of an SME-designed CINet structure to improve 

performance. 

Without altering the CINet supervised 

learning process, modifying the PSO training 

parameters may cause better exploration of the 

solution space. The supervised learning process itself 

could be improved by a number of means: 

1- Training time could be improved by identifying a 

different connective node operator that would meet 

the requirements in section 2.1, but avoid factorial 

scaling of complexity with the number of inputs. 

2- Utilize performance functions that explicitly 

penalize some of the low-performing suboptimal 

solutions, such as making one class “unclassifiable.” 

Additionally, concepts from fuzzy logic analysis, 

such as vagueness, could be incorporated into 

classification performance functions to encourage 

greater separation in the CINet outputs, thus making 

“no-class” outputs less likely.
[13]

 

3- Although “canonical” PSO has been seen to have 

good general search performance, cooperative 

learning PSO training might improve training 

performance in solution spaces with a high number of 

dimensions, by training subsets of the parameters 

independently and then combining the subsets at each 

iteration to evaluate overall performance.
[14]

 

Backpropagation, or other fast optimization 

techniques utilizing the error gradient, could replace 

PSO in problems where the performance surface has 

a small number of optima and no discontinuities. 

4- Recursive pruning could guarantee that all 

removable components are removed from the final 

network of a CINet, guaranteeing maximum 

generalizability and interpretability, and minimal 

complexity, for a given optimal parameterization. 

5- By using a generative network learning approach, 

instead of the reductive approach presented here, 

CINet training times might be significantly reduced. 

Generative approaches start with a small number of 

nodes and then add edges and nodes until a sufficient 

structure is constructed. As a result, over-connected 

nodes (that scale factorially in complexity) could be 

avoided, and the total number of nodes would tend to 

be smaller during training, linearly reducing 

complexity and training time. 
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